A mesostate-space model for EEG and MEG

نویسندگان

  • Jean Daunizeau
  • Karl J. Friston
چکیده

We present a multi-scale generative model for EEG, that entails a minimum number of assumptions about evoked brain responses, namely: (1) bioelectric activity is generated by a set of distributed sources, (2) the dynamics of these sources can be modelled as random fluctuations about a small number of mesostates, (3) mesostates evolve in a temporal structured way and are functionally connected (i.e. influence each other), and (4) the number of mesostates engaged by a cognitive task is small (e.g. between one and a few). A Variational Bayesian learning scheme is described that furnishes the posterior density on the models parameters and its evidence. Since the number of meso-sources specifies the model, the model evidence can be used to compare models and find the optimum number of meso-sources. In addition to estimating the dynamics at each cortical dipole, the mesostate-space model and its inversion provide a description of brain activity at the level of the mesostates (i.e. in terms of the dynamics of meso-sources that are distributed over dipoles). The inclusion of a mesostate level allows one to compute posterior probability maps of each dipole being active (i.e. belonging to an active mesostate). Critically, this model accommodates constraints on the number of meso-sources, while retaining the flexibility of distributed source models in explaining data. In short, it bridges the gap between standard distributed and equivalent current dipole models. Furthermore, because it is explicitly spatiotemporal, the model can embed any stochastic dynamical causal model (e.g. a neural mass model) as a Markov process prior on the mesostate dynamics. The approach is evaluated and compared to standard inverse EEG techniques, using synthetic data and real data. The results demonstrate the added-value of the mesostate-space model and its variational inversion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High resolution spatio-temporal EEG-MEG analysis of rolandic spikes.

Using high resolution EEG and MEG and a realistic volume conductor model, the authors investigated spatio-temporal aspects of the sources of spikes in children with benign rolandic epilepsy. A 64-channel EEG and simultaneous 151-channel MEG of interictal spike activity in five children all having general and/or focal seizures were recorded. A spatio-temporal multiple signal classification (MUSI...

متن کامل

معیاری نوین برای رتبه‌بندی مقاومت تخمین‌گرهای ارتباطات کانال‌های EEG/MEG در مقابل آرتیفکت هدایت حجمی

ﺩﺭ ﺩﺍﺩﻩﻫﺎی EEG/MEG، ﺁﺭﺗﻴﻔﻜﺖ ﻫﺪﺍﻳﺖ ﺣﺠﻤﻰ ﺑﻪ ﺻﻮﺭﺕ ﺗﺮﻛﻴﺐ ﺧﻄﻰ ﻟﺤﻈﻪﺍی ﻓﻌﺎﻟﻴﺖ ﻣﻨﺎﺑﻊ ﻣﻐﺰی ﺩﺭ ﻛﺎﻧﺎﻝﻫﺎ ﻣﺸﺎﻫﺪﻩ ﻣﻰﺷﻮﺩ. ﻳﻜﻰ ﺍﺯ ﻭﻳﮋﮔﻰﻫﺎی ﻣﻬﻢ ﺗﺨﻤﻴﻦﮔﺮﻫﺎی ﺍﻳﺪﻩﺁﻝ ﺍﺭﺗﺒﺎﻃﺎﺕ ﻣﻐﺰی، ﻣﻘﺎﻭﻣﺖ ﺑﻪ ﺁﺭﺗﻴﻔﻜﺖ ﻫﺪﺍﻳﺖ ﺣﺠﻤﻰ ﺍﺳﺖ؛ ﻳﻌﻨﻰ ﻫﺪﺍﻳﺖ ﺣﺠﻤﻰ ﻣﻨﺎﺑﻊ ﻣﻐﺰی ﻣﺴﺘﻘﻞ ﻫﺮﮔﺰ ﻧﺒﺎﻳﺪ ﻣﻨﺠﺮ ﺑﻪ ﺗﺨﻤﻴﻦ ﺍﺭﺗﺒﺎﻃﺎﺕ ﻣﻌﻨﻰﺩﺍﺭی ﺑﻴﻦ ﻛﺎﻧﺎﻝﻫﺎی EEG/MEG ﺷﻮﺩ. ﺗﺎﻛﻨﻮﻥ ﻫﻴﭻ ﻣﻌﻴﺎﺭی ﺑﺮﺍی ﻣﻘﺎﻳﺴﻪ ﺳﻄﺢ ﻣﻘﺎﻭﻣﺖ ﺗﺨﻤﻴﻦﮔﺮﻫﺎی ﻣﺨﺘﻠﻒ ﺍﺭﺗﺒﺎﻃﺎﺕ ﻣﻐﺰی ﺩﺭ ﻣﻘﺎﺑﻞ ﺁﺭﺗﻴﻔﻜﺖ ﻫﺪﺍﻳﺖ ﺣﺠﻤﻰ ﺩ...

متن کامل

Interpretation of MEG spike source localization in frontal lobe epilepsy with multiple independent spike foci

Magnetic source imaging using a whole-head MEG system provides a more accurate localization of epileptic focus than other routinely used noninvasive methods such as scalp video EEG and magnetic resonance imaging (MRI) [1-3]. However, MEG source localization, as estimated by the single dipole and spherical model, may not fully describe an epileptic region that includes extensive or multiple epil...

متن کامل

A Parametric Empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction

We describe an asymmetric approach to fMRI and MEG/EEG fusion in which fMRI data are treated as empirical priors on electromagnetic sources, such that their influence depends on the MEG/EEG data, by virtue of maximizing the model evidence. This is important if the causes of the MEG/EEG signals differ from those of the fMRI signal. Furthermore, each suprathreshold fMRI cluster is treated as a se...

متن کامل

Multimodal integration: constraining MEG localization with EEG and fMRI

I review recent methodological developments for multimodal integration of MEG, EEG and fMRI data within a Parametric Empirical Bayesian framework [1]. More specifically, I describe two ways to incorporate multimodal data during distributed MEG/EEG source reconstruction under linear Gaussian assumptions: 1) the simultaneous inversion of EEG and MEG data using a common generative model [2], and 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 38 1  شماره 

صفحات  -

تاریخ انتشار 2007